Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8001): 1125-1132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355796

RESUMO

To conserve energy during starvation and stress, many organisms use hibernation factor proteins to inhibit protein synthesis and protect their ribosomes from damage1,2. In bacteria, two families of hibernation factors have been described, but the low conservation of these proteins and the huge diversity of species, habitats and environmental stressors have confounded their discovery3-6. Here, by combining cryogenic electron microscopy, genetics and biochemistry, we identify Balon, a new hibernation factor in the cold-adapted bacterium Psychrobacter urativorans. We show that Balon is a distant homologue of the archaeo-eukaryotic translation factor aeRF1 and is found in 20% of representative bacteria. During cold shock or stationary phase, Balon occupies the ribosomal A site in both vacant and actively translating ribosomes in complex with EF-Tu, highlighting an unexpected role for EF-Tu in the cellular stress response. Unlike typical A-site substrates, Balon binds to ribosomes in an mRNA-independent manner, initiating a new mode of ribosome hibernation that can commence while ribosomes are still engaged in protein synthesis. Our work suggests that Balon-EF-Tu-regulated ribosome hibernation is a ubiquitous bacterial stress-response mechanism, and we demonstrate that putative Balon homologues in Mycobacteria bind to ribosomes in a similar fashion. This finding calls for a revision of the current model of ribosome hibernation inferred from common model organisms and holds numerous implications for how we understand and study ribosome hibernation.


Assuntos
Proteínas de Bactérias , Resposta ao Choque Frio , Fatores de Terminação de Peptídeos , Biossíntese de Proteínas , Psychrobacter , Proteínas Ribossômicas , Ribossomos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/metabolismo , Fator Tu de Elongação de Peptídeos/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Psychrobacter/química , Psychrobacter/genética , Psychrobacter/metabolismo , Psychrobacter/ultraestrutura , Microscopia Crioeletrônica , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Fatores de Terminação de Peptídeos/ultraestrutura
2.
Annu Rev Virol ; 10(1): 217-242, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37339768

RESUMO

Protein synthesis by the ribosome is the final stage of biological information transfer and represents an irreversible commitment to gene expression. Accurate translation of messenger RNA is therefore essential to all life, and spontaneous errors by the translational machinery are highly infrequent (∼1/100,000 codons). Programmed -1 ribosomal frameshifting (-1PRF) is a mechanism in which the elongating ribosome is induced at high frequency to slip backward by one nucleotide at a defined position and to continue translation in the new reading frame. This is exploited as a translational regulation strategy by hundreds of RNA viruses, which rely on -1PRF during genome translation to control the stoichiometry of viral proteins. While early investigations of -1PRF focused on virological and biochemical aspects, the application of X-ray crystallography and cryo-electron microscopy (cryo-EM), and the advent of deep sequencing and single-molecule approaches have revealed unexpected structural diversity and mechanistic complexity. Molecular players from several model systems have now been characterized in detail, both in isolation and, more recently, in the context of the elongating ribosome. Here we provide a summary of recent advances and discuss to what extent a general model for -1PRF remains a useful way of thinking.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Vírus de RNA , Microscopia Crioeletrônica , Ribossomos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vírus de RNA/genética , RNA Viral/genética , RNA Viral/metabolismo
3.
Biosci Rep ; 42(1)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35022657

RESUMO

Cardioviruses are single-stranded RNA viruses of the family Picornaviridae. In addition to being the first example of internal ribosome entry site (IRES) utilization, cardioviruses also employ a series of alternative translation strategies, such as Stop-Go translation and programmed ribosome frameshifting. Here, we focus on cardiovirus 2A protein, which is not only a primary virulence factor, but also exerts crucial regulatory functions during translation, including activation of viral ribosome frameshifting and inhibition of host cap-dependent translation. Only recently, biochemical and structural studies have allowed us to close the gaps in our knowledge of how cardiovirus 2A is able to act in diverse translation-related processes as a novel RNA-binding protein. This review will summarize these findings, which ultimately may lead to the discovery of other RNA-mediated gene expression strategies across a broad range of RNA viruses.


Assuntos
Cardiovirus/genética , Sítios Internos de Entrada Ribossomal , Proteínas Virais , Sítios Internos de Entrada Ribossomal/genética , Proteínas Virais/genética
4.
Nat Commun ; 12(1): 7166, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887415

RESUMO

Programmed -1 ribosomal frameshifting (PRF) in cardioviruses is activated by the 2A protein, a multi-functional virulence factor that also inhibits cap-dependent translational initiation. Here we present the X-ray crystal structure of 2A and show that it selectively binds to a pseudoknot-like conformation of the PRF stimulatory RNA element in the viral genome. Using optical tweezers, we demonstrate that 2A stabilises this RNA element, likely explaining the increase in PRF efficiency in the presence of 2A. Next, we demonstrate a strong interaction between 2A and the small ribosomal subunit and present a cryo-EM structure of 2A bound to initiated 70S ribosomes. Multiple copies of 2A bind to the 16S rRNA where they may compete for binding with initiation and elongation factors. Together, these results define the structural basis for RNA recognition by 2A, show how 2A-mediated stabilisation of an RNA pseudoknot promotes PRF, and reveal how 2A accumulation may shut down translation during virus infection.


Assuntos
Infecções por Cardiovirus/virologia , Vírus da Encefalomiocardite/metabolismo , Regulação Viral da Expressão Gênica , Proteínas Virais/química , Proteínas Virais/metabolismo , Infecções por Cardiovirus/genética , Infecções por Cardiovirus/metabolismo , Cristalografia por Raios X , Vírus da Encefalomiocardite/química , Vírus da Encefalomiocardite/genética , Mudança da Fase de Leitura do Gene Ribossômico , Humanos , Ribossomos/genética , Ribossomos/metabolismo , Proteínas Virais/genética
5.
Nucleic Acids Res ; 49(20): 11938-11958, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34751406

RESUMO

The 2A protein of Theiler's murine encephalomyelitis virus (TMEV) acts as a switch to stimulate programmed -1 ribosomal frameshifting (PRF) during infection. Here, we present the X-ray crystal structure of TMEV 2A and define how it recognises the stimulatory RNA element. We demonstrate a critical role for bases upstream of the originally predicted stem-loop, providing evidence for a pseudoknot-like conformation and suggesting that the recognition of this pseudoknot by beta-shell proteins is a conserved feature in cardioviruses. Through examination of PRF in TMEV-infected cells by ribosome profiling, we identify a series of ribosomal pauses around the site of PRF induced by the 2A-pseudoknot complex. Careful normalisation of ribosomal profiling data with a 2A knockout virus facilitated the identification, through disome analysis, of ribosome stacking at the TMEV frameshifting signal. These experiments provide unparalleled detail of the molecular mechanisms underpinning Theilovirus protein-stimulated frameshifting.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , Proteínas Virais/metabolismo , Ribossomos/metabolismo , Theilovirus/genética , Theilovirus/metabolismo , Proteínas Virais/química
6.
Viruses ; 13(7)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202160

RESUMO

The product of the interferon-stimulated gene C19orf66, Shiftless (SHFL), restricts human immunodeficiency virus replication through downregulation of the efficiency of the viral gag/pol frameshifting signal. In this study, we demonstrate that bacterially expressed, purified SHFL can decrease the efficiency of programmed ribosomal frameshifting in vitro at a variety of sites, including the RNA pseudoknot-dependent signals of the coronaviruses IBV, SARS-CoV and SARS-CoV-2, and the protein-dependent stimulators of the cardioviruses EMCV and TMEV. SHFL also reduced the efficiency of stop-codon readthrough at the murine leukemia virus gag/pol signal. Using size-exclusion chromatography, we confirm the binding of the purified protein to mammalian ribosomes in vitro. Finally, through electrophoretic mobility shift assays and mutational analysis, we show that expressed SHFL has strong RNA binding activity that is necessary for full activity in the inhibition of frameshifting, but shows no clear specificity for stimulatory RNA structures.


Assuntos
Códon de Terminação/genética , Coronavirus/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Escherichia coli/genética , Regulação Viral da Expressão Gênica , Humanos , Vírus da Leucemia Murina/genética , Proteínas com Motivo de Reconhecimento de RNA , RNA Viral/genética , Replicação Viral
7.
Elife ; 92020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32391791

RESUMO

Herpesviruses acquire their membrane envelopes in the cytoplasm of infected cells via a molecular mechanism that remains unclear. Herpes simplex virus (HSV)-1 proteins pUL7 and pUL51 form a complex required for efficient virus envelopment. We show that interaction between homologues of pUL7 and pUL51 is conserved across human herpesviruses, as is their association with trans-Golgi membranes. We characterized the HSV-1 pUL7:pUL51 complex by solution scattering and chemical crosslinking, revealing a 1:2 complex that can form higher-order oligomers in solution, and we solved the crystal structure of the core pUL7:pUL51 heterodimer. While pUL7 adopts a previously-unseen compact fold, the helix-turn-helix conformation of pUL51 resembles the cellular endosomal complex required for transport (ESCRT)-III component CHMP4B and pUL51 forms ESCRT-III-like filaments, suggesting a direct role for pUL51 in promoting membrane scission during virus assembly. Our results provide a structural framework for understanding the role of the conserved pUL7:pUL51 complex in herpesvirus assembly.


Most people suffer from occasional cold sores, which are caused by the herpes simplex virus. This virus causes infections that last your entire life, but for the most part it lies dormant in your cells and reactivates only at times of stress. When it reactivates, the virus manipulates host cells to make new virus particles that may spread the infection to other people. Like many other viruses, herpes simplex viruses also steal jelly-like structures known as membranes from their host cells to form protective coats around new virus particles. In cells from humans and other animals, proteins belonging to a molecular machine known as ESCRT form filaments that bend and break membranes as the cells require. Many viruses hijack the ESCRT machinery to wrap membranes around new virus particles. However, herpes simplex viruses do not follow the usual rules for activating this machine. Instead, they rely on two viral proteins called pUL7 and pUL51 to hot-wire the ESCRT machinery. Previous studies have shown that these two proteins bind to each other, but it remained unclear how they work. Butt et al. used a combination of biochemical and biophysical techniques to solve the three-dimensional structures of pUL7 and pUL51 when bound to each other. The experiments determined that the structure of pUL51 resembles the structures of different components in the ESCRT machinery. Like the ESCRT proteins, pUL51 formed filaments, suggesting that pUL51 bends membranes in cells and that pUL7 blocks it from doing so until the time is right. Further experiments showed that the equivalents of pUL7 and pUL51 in other members of the herpes virus family also bind to each other in a similar way. These findings reveal that herpes simplex viruses and their close relatives have evolved a different strategy than many other viruses to steal membranes from host cells. Interfering with this mechanism may provide new avenues for designing drugs or improving vaccines against these viruses. The pUL7 and pUL51 proteins may also inspire new tools in biotechnology that could precisely control the shapes of biological membranes.


Assuntos
Herpesvirus Humano 1/fisiologia , Fosfoproteínas/química , Fosfoproteínas/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas Virais/química , Proteínas Virais/genética , Montagem de Vírus , Células HEK293 , Células HeLa , Herpes Simples/virologia , Herpesvirus Humano 1/química , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/metabolismo , Replicação Viral , Rede trans-Golgi
8.
Nature ; 575(7781): 234-237, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666700

RESUMO

The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress1,2. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer1,3. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI4,5 by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase6,7. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair.


Assuntos
Microscopia Crioeletrônica , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Subunidades Proteicas/química , Animais , Galinhas , Anemia de Fanconi/enzimologia , Proteína do Grupo de Complementação L da Anemia de Fanconi/química , Proteína do Grupo de Complementação L da Anemia de Fanconi/ultraestrutura , Espectrometria de Massas , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade , Ubiquitinação
9.
Nat Struct Mol Biol ; 26(10): 988, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420603

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Nucleic Acids Res ; 47(15): 8207-8223, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31180502

RESUMO

Many viruses utilize programmed -1 ribosomal frameshifting (-1 PRF) to express additional proteins or to produce frameshift and non-frameshift protein products at a fixed stoichiometric ratio. PRF is also utilized in the expression of a small number of cellular genes. Frameshifting is typically stimulated by signals contained within the mRNA: a 'slippery' sequence and a 3'-adjacent RNA structure. Recently, we showed that -1 PRF in encephalomyocarditis virus (EMCV) is trans-activated by the viral 2A protein, leading to a temporal change in PRF efficiency from 0% to 70% during virus infection. Here we analyzed PRF in the related Theiler's murine encephalomyelitis virus (TMEV). We show that 2A is also required for PRF in TMEV and can stimulate PRF to levels as high as 58% in rabbit reticulocyte cell-free translations and 81% during virus infection. We also show that TMEV 2A trans-activates PRF on the EMCV signal but not vice versa. We present an extensive mutational analysis of the frameshift stimulators (mRNA signals and 2A protein) analysing activity in in vitro translation, electrophoretic mobility shift and in vitro ribosome pausing assays. We also investigate the PRF mRNA signal with RNA structure probing. Our results substantially extend previous characterization of protein-stimulated PRF.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Viral/genética , Ribossomos/genética , Theilovirus/genética , Animais , Sequência de Bases , Camundongos , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Viral/química , RNA Viral/metabolismo , Ribossomos/metabolismo , Theilovirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Nat Struct Mol Biol ; 26(6): 433-442, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31110294

RESUMO

The 3' poly(A) tail of messenger RNA is fundamental to regulating eukaryotic gene expression. Shortening of the poly(A) tail, termed deadenylation, reduces transcript stability and inhibits translation. Nonetheless, the mechanism for poly(A) recognition by the conserved deadenylase complexes Pan2-Pan3 and Ccr4-Not is poorly understood. Here we provide a model for poly(A) RNA recognition by two DEDD-family deadenylase enzymes, Pan2 and the Ccr4-Not nuclease Caf1. Crystal structures of Saccharomyces cerevisiae Pan2 in complex with RNA show that, surprisingly, Pan2 does not form canonical base-specific contacts. Instead, it recognizes the intrinsic stacked, helical conformation of poly(A) RNA. Using a fully reconstituted biochemical system, we show that disruption of this structure-for example, by incorporation of guanosine into poly(A)-inhibits deadenylation by both Pan2 and Caf1. Together, these data establish a paradigm for specific recognition of the conformation of poly(A) RNA by proteins that regulate gene expression.


Assuntos
Exorribonucleases/metabolismo , Poli A/metabolismo , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Exorribonucleases/química , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Poli A/química , RNA Mensageiro/química , Ribonucleases/química , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química
12.
Mol Cell ; 73(6): 1217-1231.e11, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30737185

RESUMO

Cleavage and polyadenylation factor (CPF/CPSF) is a multi-protein complex essential for formation of eukaryotic mRNA 3' ends. CPF cleaves pre-mRNAs at a specific site and adds a poly(A) tail. The cleavage reaction defines the 3' end of the mature mRNA, and thus the activity of the endonuclease is highly regulated. Here, we show that reconstitution of specific pre-mRNA cleavage with recombinant yeast proteins requires incorporation of the Ysh1 endonuclease into an eight-subunit "CPFcore" complex. Cleavage also requires the accessory cleavage factors IA and IB, which bind substrate pre-mRNAs and CPF, likely facilitating assembly of an active complex. Using X-ray crystallography, electron microscopy, and mass spectrometry, we determine the structure of Ysh1 bound to Mpe1 and the arrangement of subunits within CPFcore. Together, our data suggest that the active mRNA 3' end processing machinery is a dynamic assembly that is licensed to cleave only when all protein factors come together at the polyadenylation site.


Assuntos
Endonucleases/metabolismo , Poliadenilação , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Citocromos c/genética , Citocromos c/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Ativação Enzimática , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Complexos Multiproteicos , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Precursores de RNA/genética , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Fatores de Poliadenilação e Clivagem de mRNA/genética
13.
J Biol Chem ; 293(24): 9210-9222, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29695507

RESUMO

Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding.


Assuntos
RNA Fúngico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , RNA Fúngico/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Especificidade por Substrato , Fatores de Poliadenilação e Clivagem de mRNA/química
14.
Nat Commun ; 9(1): 151, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323104

RESUMO

Sphingolipids are essential components of cellular membranes and defects in their synthesis or degradation cause severe human diseases. The efficient degradation of sphingolipids in the lysosome requires lipid-binding saposin proteins and hydrolytic enzymes. The glycosphingolipid galactocerebroside is the primary lipid component of the myelin sheath and is degraded by the hydrolase ß-galactocerebrosidase (GALC). This enzyme requires the saposin SapA for lipid processing and defects in either of these proteins causes a severe neurodegenerative disorder, Krabbe disease. Here we present the structure of a glycosphingolipid-processing complex, revealing how SapA and GALC form a heterotetramer with an open channel connecting the enzyme active site to the SapA hydrophobic cavity. This structure defines how a soluble hydrolase can cleave the polar glycosyl headgroups of these essential lipids from their hydrophobic ceramide tails. Furthermore, the molecular details of this interaction provide an illustration for how specificity of saposin binding to hydrolases is encoded.


Assuntos
Galactosilceramidase/metabolismo , Glicoesfingolipídeos/metabolismo , Saposinas/metabolismo , Linhagem Celular , Ceramidas/metabolismo , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica/genética , Estrutura Terciária de Proteína , Saposinas/genética
15.
Science ; 358(6366): 1056-1059, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29074584

RESUMO

Newly transcribed eukaryotic precursor messenger RNAs (pre-mRNAs) are processed at their 3' ends by the ~1-megadalton multiprotein cleavage and polyadenylation factor (CPF). CPF cleaves pre-mRNAs, adds a polyadenylate tail, and triggers transcription termination, but it is unclear how its various enzymes are coordinated and assembled. Here, we show that the nuclease, polymerase, and phosphatase activities of yeast CPF are organized into three modules. Using electron cryomicroscopy, we determined a 3.5-angstrom-resolution structure of the ~200-kilodalton polymerase module. This revealed four ß propellers, in an assembly markedly similar to those of other protein complexes that bind nucleic acid. Combined with in vitro reconstitution experiments, our data show that the polymerase module brings together factors required for specific and efficient polyadenylation, to help coordinate mRNA 3'-end processing.


Assuntos
Processamento de Terminações 3' de RNA , RNA Polimerase II/química , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Fatores de Poliadenilação e Clivagem de mRNA/química , Microscopia Crioeletrônica , Polinucleotídeo Adenililtransferase/metabolismo , Conformação Proteica , RNA Polimerase II/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Fatores de Poliadenilação e Clivagem de mRNA/ultraestrutura
16.
Nat Commun ; 8: 15786, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28593992

RESUMO

Hunter syndrome is a rare but devastating childhood disease caused by mutations in the IDS gene encoding iduronate-2-sulfatase, a crucial enzyme in the lysosomal degradation pathway of dermatan sulfate and heparan sulfate. These complex glycosaminoglycans have important roles in cell adhesion, growth, proliferation and repair, and their degradation and recycling in the lysosome is essential for cellular maintenance. A variety of disease-causing mutations have been identified throughout the IDS gene. However, understanding the molecular basis of the disease has been impaired by the lack of structural data. Here, we present the crystal structure of human IDS with a covalently bound sulfate ion in the active site. This structure provides essential insight into multiple mechanisms by which pathogenic mutations interfere with enzyme function, and a compelling explanation for severe Hunter syndrome phenotypes. Understanding the structural consequences of disease-associated mutations will facilitate the identification of patients that may benefit from specific tailored therapies.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Mucopolissacaridose II/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Glicoproteínas/genética , Humanos , Modelos Moleculares , Mucopolissacaridose II/etiologia , Mutação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Sulfatos/metabolismo
17.
Traffic ; 17(8): 908-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27126738

RESUMO

Krabbe disease is a severe, fatal neurodegenerative disorder caused by defects in the lysosomal enzyme galactocerebrosidase (GALC). The correct targeting of GALC to the lysosome is essential for the degradation of glycosphingolipids including the primary lipid component of myelin. Over 100 different mutations have been identified in GALC that cause Krabbe disease but the mechanisms by which they cause disease remain unclear. We have generated monoclonal antibodies against full-length human GALC and used these to monitor the trafficking and processing of GALC variants in cell-based assays and by immunofluorescence microscopy. Striking differences in the secretion, processing and endosomal targeting of GALC variants allows the classification of these into distinct categories. A subset of GALC variants are not secreted by cells, not proteolytically processed, and remain trapped in the ER; these are likely to cause disease due to protein misfolding and should be targeted for pharmacological chaperone therapies. Other GALC variants can be correctly secreted by cells and cause disease due to catalytic defects in the enzyme active site, inappropriate post-translational modification or a potential inability to bind essential cofactors. The classification of disease pathogenesis presented here provides a molecular framework for appropriate targeting of future Krabbe disease therapies.


Assuntos
Galactosilceramidase/metabolismo , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Lisossomos/metabolismo , Mutação/genética , Linhagem Celular , Galactosilceramidase/química , Galactosilceramidase/genética , Humanos , Lisossomos/genética , Processamento de Proteína Pós-Traducional
18.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 7): 895-900, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26144235

RESUMO

The saposins are essential cofactors for the normal lysosomal degradation of complex glycosphingolipids by acid hydrolase enzymes; defects in either saposin or hydrolase function lead to severe metabolic diseases. Saposin A (SapA) activates the enzyme ß-galactocerebrosidase (GALC), which catalyzes the breakdown of ß-D-galactocerebroside, the principal lipid component of myelin. SapA is known to bind lipids and detergents in a pH-dependent manner; this is accompanied by a striking transition from a `closed' to an `open' conformation. However, previous structures were determined at non-lysosomal pH. This work describes a 1.8 Šresolution X-ray crystal structure determined at the physiologically relevant lysosomal pH 4.8. In the absence of lipid or detergent at pH 4.8, SapA is observeed to adopt a conformation closely resembling the previously determined `closed' conformation, showing that pH alone is not sufficient for the transition to the `open' conformation. Structural alignments reveal small conformational changes, highlighting regions of flexibility.


Assuntos
Lisossomos , Saposinas/química , Saposinas/genética , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X/métodos , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
19.
Chem Sci ; 6(5): 3075-3086, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26029356

RESUMO

Krabbe disease is a devastating neurodegenerative disorder characterized by rapid demyelination of nerve fibers. This disease is caused by defects in the lysosomal enzyme ß-galactocerebrosidase (GALC), which hydrolyzes the terminal galactose from glycosphingolipids. These lipids are essential components of eukaryotic cell membranes: substrates of GALC include galactocerebroside, the primary lipid component of myelin, and psychosine, a cytotoxic metabolite. Mutations of GALC that cause misfolding of the protein may be responsive to pharmacological chaperone therapy (PCT), whereby small molecules are used to stabilize these mutant proteins, thus correcting trafficking defects and increasing residual catabolic activity in cells. Here we describe a new approach for the synthesis of galacto-configured azasugars and the characterization of their interaction with GALC using biophysical, biochemical and crystallographic methods. We identify that the global stabilization of GALC conferred by azasugar derivatives, measured by fluorescence-based thermal shift assays, is directly related to their binding affinity, measured by enzyme inhibition. X-ray crystal structures of these molecules bound in the GALC active site reveal which residues participate in stabilizing interactions, show how potency is achieved and illustrate the penalties of aza/iminosugar ring distortion. The structure-activity relationships described here identify the key physical properties required of pharmacological chaperones for Krabbe disease and highlight the potential of azasugars as stabilizing agents for future enzyme replacement therapies. This work lays the foundation for new drug-based treatments of Krabbe disease.

20.
Proc Natl Acad Sci U S A ; 110(51): 20479-84, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297913

RESUMO

Glycosphingolipids are ubiquitous components of mammalian cell membranes, and defects in their catabolism by lysosomal enzymes cause a diverse array of diseases. Deficiencies in the enzyme ß-galactocerebrosidase (GALC) cause Krabbe disease, a devastating genetic disorder characterized by widespread demyelination and rapid, fatal neurodegeneration. Here, we present a series of high-resolution crystal structures that illustrate key steps in the catalytic cycle of GALC. We have captured a snapshot of the short-lived enzyme-substrate complex illustrating how wild-type GALC binds a bona fide substrate. We have extensively characterized the enzyme kinetics of GALC with this substrate and shown that the enzyme is active in crystallo by determining the structure of the enzyme-product complex following extended soaking of the crystals with this same substrate. We have also determined the structure of a covalent intermediate that, together with the enzyme-substrate and enzyme-product complexes, reveals conformational changes accompanying the catalytic steps and provides key mechanistic insights, laying the foundation for future design of pharmacological chaperones.


Assuntos
Galactosilceramidase/química , Leucodistrofia de Células Globoides/enzimologia , Catálise , Cristalografia por Raios X , Estabilidade Enzimática/genética , Galactosilceramidase/genética , Galactosilceramidase/metabolismo , Células HEK293 , Humanos , Leucodistrofia de Células Globoides/genética , Mutação , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...